Bucks County Community College Center for Workforce Development ## Course Outlines for Industrial Skills Stackable Micro-Credentials (Completion of all eight credentials earns METALWORK TRAINING PROGRAM Certificate.) **Total Hours of Instruction: 288** Hours per credential: Intro to Manufacturing, OSHA 10, Forklift and Public Safety: 36 hours Hand Tool Use: 24 hours Blueprint Reading and AutoCAD: 57 hours Shop Math and Measurement: 54 hours Machining: 60 hours Welding: 42 hours Personal Finance: 3 hours Workplace Employability Skills: 12 ## **Industry Recognized Credentials:** OSHA10 Forklift Safety National Institute for Metalworking Skills (NIMS) exam for Measurement, Materials, and Safety Certification | Micro-Credential:
Intro to Manufacturing, OSHA 10, Forklift and Public Safety | Total No. of Days | Total No. of Hours
36 | |---|-------------------|--------------------------| | Orientation | 1.5 | 9 | | Intro of instructor, experience and interest in the craft | | | | Student introductions, personal interests/experience | | * | | Description of the work environment, personal requirements
for shop work | | | | Brief historical overview | | | | Role of metal, machining and fabrication in society, touches
everything. | | | | • Introduce concept of "precision" | | | | Manufacturing in the US, types of products, industrial,
consumer, medical, etc. | | | | Intro to machinery types, "machine tools" metal cutting, metal
forming, edm, abrasive, laser, waterjet, welding, additive, etc. | | | | Materials, types of, composition, classes and designation | | | | Workplace Skills | 1 | 6 | | Types of jobs, machinist, CNC machinist, CNC operator, welder, | _ | Ü | | fabricator, etc. | | | | Shift work, overtime, importance of deadlines | | | | Shop "culture", pranks, gender roles, pinups, respect,
collaboration, bathrooms | | | | Personal skills required, physical, psychological. Responsible,
reliable, attention to detail, accurate, team player | | | | Further training opportunities, career planning | | | | 100 | | | | |-----|---|-------------------|--------------------| | • | Math skills, material knowledge and understanding, proficient | | | | | with hand tools | | | | • | Interest in the field, lifelong learning, new technologies | | | | • | Computers and their use in the shop, not just CNC, email, | | | | | ordering, job tracking, timesheets, etc. | 3.5 | 21 | | OV | erall Program Safety | 3.5 | 21 | | • | Safety and personal responsibility, ability to predict outcomes, similar to driving and the drivers ed SIPDI principle (scan, | | | | | interpret, predict, decide, execute) | | | | | OSHA, NIOSH | | | | | OSHA 10 Certification | | | | | Hazardous materials, MSDS, NFPA, | | | | | Personal Protective Equipment, eyes, ears, shoes, hard hats | | | | | aprons, coveralls | | | | | Gloves, special case, when to use and not to use | | | | | Physical, lifting, trip hazards, slip prevention, heavy and large | | | | | lifting and moving | | | | • | Keeping workplace neat | | | | • | Handling and storage of cutting tools, bandsaw blades, etc | | | | • | Proper storage of materials stock, chemicals, oily waste, etc | | | | • | Hazards of machines, guards, rotating spindles, removal of | | | | | chips | | | | • | Electrical, lock out/tag out | | | | • | Compressed air safety and proper use | | | | • | Gases, oxy, acetylene, welding gases, argon, CO2, helium, etc. | | | | | Safety, storage and use | | | | • | Forklift safety training | | | | | icro-Credential: | Total No. of Days | Total No. of Hours | | | and Tool Use | 4 | 24 | | Ha | and Tools, Materials, and Mechanical Hardware | 3 | 18 | | • | Basic hand tools and benchwork, a Right Tool for every Job, proper and safe use of: | | | | | Screwdrivers, Phillips, straight, offset, Torx | | | | | Pliers, slip joint, cutting, locking | | | | | Hammers, dead blow, soft metal, rawhide, plastic | | | | | Chisels, scribers, punches, prybars, etc | | | | | Wrenches, socket, open end, hex, adjustable, spanner, | | | | | | 1 | | | | strap, pipe, etc | | | | | strap, pipe, etc o Bench Vise | | | | | Bench ViseClamps, C, toolmakers, hinged welding, spring | | | | | Bench Vise Clamps, C, toolmakers, hinged welding, spring Files and filing, other hand tools, de-burring, abrasives | | | | | Bench Vise Clamps, C, toolmakers, hinged welding, spring Files and filing, other hand tools, de-burring, abrasives Drills, taps, dies | | | | • | Bench Vise Clamps, C, toolmakers, hinged welding, spring Files and filing, other hand tools, de-burring, abrasives Drills, taps, dies Materials, types of, composition, classes and designation | | | | • | Bench Vise Clamps, C, toolmakers, hinged welding, spring Files and filing, other hand tools, de-burring, abrasives Drills, taps, dies Materials, types of, composition, classes and designation Alloys and heat treatment | | | | • | Bench Vise Clamps, C, toolmakers, hinged welding, spring Files and filing, other hand tools, de-burring, abrasives Drills, taps, dies Materials, types of, composition, classes and designation Alloys and heat treatment Fasteners | | | | • | Bench Vise Clamps, C, toolmakers, hinged welding, spring Files and filing, other hand tools, de-burring, abrasives Drills, taps, dies Materials, types of, composition, classes and designation Alloys and heat treatment | | | | • | Nomenclature of bolts, head, shank, pitch, major diam, minor diam, grades and types of materials | | | |-----|---|-------------------|--------------------| | ١. | Basic thread sizes | | | | | Types of threaded fasteners, cap screws, socket head, button | | | | | head, set screws, machine table bolts, standoffs, locking, etc | | | | | | | | | | Other special types, U bolts, eye bolts, hoists and lift | | | | | Nuts & washers, types, selection, sim to bolts | | | | • | Rivets, type and installation tools, hand and machine | | | | • | Pins: dowel, spring, taper, cotter, clevis | | | | C h | Misc Mechanical components: | | | | | aft collars and couplings, retaining rings, keys and keyways, etc. | | _ | | 1 | op Machinery | 1 | 6 | | • | Metal cutting saws; horizontal band, vertical band, cold saws, abrasive | | | | | Drill presses, types and use | | | | • | Machine tools, milling and turning, manual and CNC | | | | • | Grinders and belt grinders | | l | | • | Materials handling, pallet jacks, hand trucks, fork lifts, cranes | | | | M | icro-Credential: | Total No. of Days | Total No. of Hours | | Sh | op Math and Measurement | 9 | 54 | | M | easurement Tools & Systems | 4 | 24 | | • | Define measurement types, basic, semi precision and precision | | | | | Define and discuss Tolerance, introduce concept of GD&T | | | | • | Rules, types | | | | • | English & metric systems | | | | • | Exercises and practice in reading scales and tape measures | | | | • | Other measuring tools, combination square, adjustable square, | | | | | protractor, screw pitch gage | | | | • | Exercises and practice in reading measurements with | | | | | adjustable squares and angles | | | | • | Precision measurement: | | | | • | Concept of precision measurements | | | | • | Calipers, vernier, dial, digital | | | | | | | | | • | How to read a vernier, exercise and practice | | | | • | | | | | | Micrometers, how to read, exercise and practice | | r. | | • | | | | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, | | | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, hole gages, etc Dial indicator | | E E | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, hole gages, etc Dial indicator Bevel protractors | | | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, hole gages, etc Dial indicator Bevel protractors Gages, go/no go | | · · | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, hole gages, etc Dial indicator Bevel protractors Gages, go/no go Surface finish and roughness | | | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, hole gages, etc Dial indicator Bevel protractors Gages, go/no go Surface finish and roughness Introduce concept of QC, CMM's, inspection, classes of fits | Д | 24 | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, hole gages, etc Dial indicator Bevel protractors Gages, go/no go Surface finish and roughness Introduce concept of QC, CMM's, inspection, classes of fits op Math | 4 | 24 | | • | Micrometers, how to read, exercise and practice Other precision tools, depth micrometers, inside micrometers, hole gages, etc Dial indicator Bevel protractors Gages, go/no go Surface finish and roughness Introduce concept of QC, CMM's, inspection, classes of fits | 4 | 24 | | Order of operations | | | |--|-------------------|---------------------------| | Add and subtract fractions, convert to decimal | | | | Converting metric/English back and forth | | | | Circles and angles, basic geometry | | | | Co-ordinate systems, concept of 0,0,0 | | | | Basic trig and solving for angles | | | | NIMS Certification Prep | 1 | 6 | | Micro-Credential: | Total No. of Days | Total No. of Hours | | Blueprint Reading & AutoCAD | 9.5 | 57 | | Blueprint reading | 2.5 | 15 | | • The "landscape" of a print, title block, location stations, revs | | | | Types of views, 3rd angle, 1st angle projection | | | | • Line types, object, dim., hidden, ctr line | | | | Notes and abbreviations | | | | Sections, cutting planes | | | | Symbols, hole and thread notes, GD&T symbols | 0. | | | Exercises in reading and intercepting drawings | | | | • Fit classes | | | | • Basics of GD&T | | | | AutoCAD | 7 | 42 | | AutoCAD | Total No. of Days | Total No. of Hours | | Micro-Credential: Machining | 10 | 60 | | Equipment Maintenance | 0.5 | 3 | | Why important to have routine schedule | | | | Cleaning, lubrication, types of oils, oils locations | | | | Use of air around machine tools | | | | Grinding Introduction | 0.5 | 3 | | Types of grinders, "offhand grinding" | | | | Wheel safety and identification, tool rests, spark shield | | | | Intro to precision grinding | | | | Band Saws and Blades | 0.5 | 3 | | Types of saws, horizontal, vertical | | | | Speeds and feeds(SFM), different types of materials | 1 | | | Bandsaw safety, cutting round stock on a vertical saw | | | | Basic controls and how they work | | | | Blade selection and use, ratio of blade size to radii | | | | Handling of blades, removing and installing blades and coiling | | | | Drill Press Intro | 0.5 | 3 | | Types of drill presses, sizes | | | | Drill press safety | | | | Speeds and feeds, SFM | | | | - | | | | Basic controls and how they work | | | | Basic controls and now they work Operations performed on a drill press, drill, countersink, | | | | Lath | es | 3 | 18 | |------|--|-------------------|--------------------| | • 1 | ntro, history, the "mother" of machine tools | _ | | | | Types of lathes, engine, precision, 2 nd operation, CNC lathes | | | | • E | Basic concept of operation, basic controls, setting tools | | | | • (| Operations that can be performed on a lathe, turning, facing, | | | | b | poring, drilling, threading, cut off, knurling, etc | | | | • 5 | speeds and feeds, SFM, IPM | | | | | afety with lathes | | | | | Vorkholding and Toolholding methods | | | | | ypes of cutters, intro to inserts | | | | | inishes | | | | | CNC lathes | | | | | ng machines | 3 | 18 | | | ypes of milling machines, knee, horizontal, CNC mills | | | | | asic concept of operation, basic controls(use knee mill for example) | | | | | Ailling machine safety | | | | | Vhat operations can be performed on a milling machine, | | | | | ockets, facing, boring, drilling tapping, etc | | | | | oolholding, and types of tools used in a milling machine, drills, | | | | | ypes of cutters, etc | | | | | cutters in depth, end mills, drills, face mills, saws, inserts | | | | | eeds and Speeds, SFM, chip load, climb and conventional | | | | | nilling | | | | | oordinate systems, x,y,z | | | | 0 | Vorkholding, vises, squaring the vise, clamping to the table, ther types of clamping methods | | | | | asic machining, squaring a block, locating a workpiece, edge nders, DRO's, ABS & INC | | | | | oing large work on a vertical mill, turret movements, clamping | | | | • C | ther advanced work, rotary tables, dividing and indexing | | | | • C | NC versions of milling machines | | | | CNC | Machining | 2 | 12 | | | ntro to machine types, VMC, HMC, turning centers | | | | | ool changers, offsets, cutter comp. | | | | | rogramming, CAD, CAM, parts of a program, conversational | | | | - | rogramming | | | | | Canned cycles" | | | | | oordinate systems, Cartesian, polar | | | | | codes, M codes | 02-35 - W | | | | o-Credential: | Total No. of Days | Total No. of Hours | | Weld | | 7 | 42 | | Weld | _ | 7 | 42 | | | itro, how welding works | | | | | ypes of welding gas, stick, mig, tig, which process and why | | | | • 0 | ther process, plasma cutting, etc | | | * Y | Micro-Credential: Workplace and Employability Skills | Total No. of Days
2 | Total No. of Hours
12 | |--|------------------------|---------------------------| | Workplace and Employability Skills Career path and planning, today entry level, tomorrow,? Job seeking Networking Resume and cover letter, references Portfolio, certifications, awards Further education Interviewing Employment skills, post-employment Helping others new to the trade | 2 | 12 | | Micro-Credential: Personal Finance | Total No. of Days | Total No. of Hours | | Understand the concept and importance of budgeting Develop and analyze a personal budget Differentiate between wants and needs Analyze the effects of education and training on income potential Examine how limited resources affect financial decisions Discuss consequences of poor financial decisions Evaluate the concept of delayed gratification and its impact upon a budget Explore consequences of relying on debt to balance a budget | .5 | 3 | | Completion of all Micro-Credentials = Metalwork Training Program Certificate | Total No. of Days | Total No. of Hours
288 |